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Sparse coding

• Use of sparse priors for unsupervised learning 

• If the problem utilizes a non-Gaussian prior which is 
sparsity promoting (such as a Laplace distribution), we 
will be observing each observed vector as a sparse 
combination of basis vectors (columns of 𝑾);

• In such a case, when there is no constraint on the 
orthogonality of 𝑾, we get a method called sparse 
coding.

• In this context, we call the factor loading matrix 𝑾 a 
dictionary; each column is referred to as an atom.

• In sparse coding, the dictionary can be fixed or learned. If 
it is fixed, it is common to use a wavelet or DCT basis, 
since many natural signals can be well approximated by a 
small number of such basis functions. 



Sparse coding

• However, it is also possible to learn the dictionary 
𝒟, by maximizing the likelihood

log 𝑝 𝒟 𝑾 = 

𝑖=1

𝑁

log 
𝒛𝑖

𝒩 𝐱𝑖 𝑾𝒛𝑖 , 𝜎
2𝑰 𝑝 𝒛𝑖 𝑑𝒛𝑖

• Here, 𝒛𝑖 are the latent factors. In sparse coding, a 
sparsity promoting prior is put on the latent 
factors, 𝒛𝑖.



Learning a sparse coding 
dictionary

• The above equation is a hard objective to minimize, 
hence the following approximation is made

log 𝑝 𝒟 𝑾 ≈ 
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𝒛𝑖
[log𝒩 𝐱𝑖 𝑾𝒛𝑖 , 𝜎

2𝑰 + log 𝑝 𝒛𝑖 ]

• If 𝑝 𝒛𝑖 is Laplace, we can rewrite the NLL (negative 
log likelihood) is written as 

𝑁𝐿𝐿 𝑾,𝒁 =  𝑖=1
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Learning a sparse coding 
dictionary
• To prevent W from becoming arbitrarily large, it is 

common to constrain the  norm of its columns to be 
less than or equal to 1.  Denote this constraint as
𝐶 = {𝑾 ∈ ℝ𝐷×𝐿 𝑠. 𝑡 𝒘𝑗

𝑇𝒘𝑗 ≤ 1}

• Then we want to solve min
𝑾∈𝐶,𝒁∈ℝ𝑳×𝑵

𝑁𝐿𝐿(𝑾, 𝒁)

• For a fixed 𝒛𝑖 , the optimization over 𝑾 is a simple 
least squares problem. And for a fixed dictionary 𝑾, 
the optimization problem over 𝒁 is identical to the 
lasso problem, for which many fast algorithms exist. 

• This suggests an obvious iterative optimization 
scheme, in which we alternate between optimizing 
𝑾 and 𝒁. 



• A variety of other models result in an optimization 

problem that is similar  to sparse coding.

• For example, non-negative matrix factorization 

or NMF requires solving an objective of the form:

min
𝑾∈𝐶,𝒁∈ℝ𝐿×𝑵

1

2
 𝑖=1
𝑁 𝐱𝑖 −𝑾𝒛𝑖 2

2
s. t 𝑾 ≥ 0, 𝒛𝑖 ≥ 0

• The intuition behind this constraint is that the 

learned dictionary may be more interpretable if it is 

a positive sum of positive “parts”, rather than a 

sparse sum of atoms that may be positive or 

negative. 

• When NMF is combined with a sparsity promoting 

prior on the latent factors, it is called non-negative 

sparse coding



Sparse coding

• Following is a summary of the various latent models

• Summary of abbreviations: PCA = principal 
components analysis; FA = factor analysis; ICA = 
independent components analysis; MF matrix 
factorization. 

Table 13.3 Summary of various latent factor models. A dash 
“-” in the p(W) column means ML parameter estimation is 
performed  rather than MAP parameter estimation. 



Sparse matrix factorization

• Alternatively, we can drop the positivity 
constraint, but impose a sparsity constraint on 
both the factors 𝒛𝑖 and the dictionary W. We call 

this sparse matrix factorization. 

• To ensure strict convexity, we can use an elastic 
net type penalty on the weights resulting in
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Results of dictionary learning from 
image patches
• The dictionary that is learned by applying sparse coding to 

patches of natural images consists of basis vectors that look like 
the filters that are found in simple cells in the primary visual 
cortex of the mammalian brain.

• In particular, the filters look like bar and edge detectors, as 
shown in Figure 13.21(b).

• Interestingly, using ICA gives visually similar results, as shown 
in Figure 13.21(a). By contrast, applying PCA to the same data 
results in sinusoidal gratings, as shown in Figure 13.21(c); 
these do not look like cortical cell response patterns. 

• It has therefore been conjectured that parts of the cortex may 
be performing sparse coding of the sensory input; the resulting 
latent representation is then further processed by higher levels 
of the brain.



Figure 13.21 Illustration of the 
filters learned by various methods 
when applied to natural image 
patches:

(Each patch is first centered and 
normalized to unit norm.) (a) ICA. 
(b) sparse coding. (c) PCA. (d) non-
negative matrix factorization. (e) 
sparse PCA with low sparsity on 
weight matrix. (f) sparse PCA with 
high sparsity on weight matrix. 



Compressed sensing

• Imagine that, instead of observing the data 𝐱 ∈

ℝ𝐷, we observe a low-dimensional projection of 

it, 𝐲 = 𝑹𝐱 + 𝜖 where 𝐲 ∈ ℝ𝑀, 𝑹 is a 𝑀 × 𝐷matrix, 

𝑀 ≪ 𝐷, and 𝜖 is a noise term(usually Gaussian). 

• We assume 𝑹 is a known sensing matrix, 

corresponding to different linear projections of x. 



Compressed Sensing
• Our goal is to infer 𝑝(𝐱|𝒚, 𝑹).How can we hope to 

recover all of x if we do not measure all of x? The 

answer is: we can use Bayesian inference with an 

appropriate prior, that exploits  the fact that natural 

signals can be expressed as a weighted combination 

of a small number of suitably chosen basis functions. 

• That is, we assume 𝐱 = 𝑾𝒛,where 𝒛 has a sparse 

prior, and 𝑾 is suitable dictionary. This is called 

compressed sensing or compressive sensing.

• For CS to work, it is important to represent the signal 

in the right basis, otherwise it will not be sparse. In 

traditional CS applications, the dictionary is fixed to 

be a standard form, such as wavelets. 



Image inpainting and denoising

• Suppose we have an image which is corrupted 
in some way, e.g., by having text or scratches 
sparsely superimposed on top of it, as in Figure 
13.23. 

• We might want to estimate the underlying 
“clean” image. This is called image inpainting. 
One can use similar techniques for image 
denoising.

Figure 13.23 An example of image inpainting using sparse coding. Left: 

original image. Right: reconstruction.



Image inpainting and denoising
• We can model this as a special kind of compressed 

sensing problem. 

• The basic idea is as follows. We partition the image into 
overlapping patches, 𝒚𝒊, and concatenate them to form 𝒚.

• We define 𝑹 so that the i’th row selects out patch i. 

• Now define 𝑽 to be the visible (uncorrupted) components 
of 𝒚, and ℋ to be the hidden components. 

• To perform image inpainting, we just compute 
𝑝(𝒚ℋ|𝒚𝑽, 𝜃),where θ are the model parameters, which 
specify the dictionary W and the sparsity level 𝜆 of 𝒛. 

• We can either learn a dictionary offline from a database 
of images, or we can learn a dictionary just for this 
image, based on the non-corrupted patches.


